Description: Outlier Detection for Temporal Data by Manish Gupta, Jing Gao, Charu Aggarwal, Jiawei Han Estimated delivery 3-12 business days Format Paperback Condition Brand New Description Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data.In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neuralnetworks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers. Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors Biographies Author Biography Manish Gupta is an applied researcher at Microsoft Bing, India. He is also an adjunct faculty at the International Institute of Information Technology, Hyderabad (IIIT-H), India. He received his Masters in Computer Science from IIT Bombay in 2007 and his Ph.D. in Computer Science from University of Illinois at Urbana Champaign in 2013. He worked for Yahoo! Bangalore from 2007 to 2009. His research interests are in the areas of data mining, information retrieval, and web mining. Jing Gao received her Ph.D. from University of Illinois at Urbana Champaign in 2011. She is currently an assistant professor in the Computer Science and Engineering Department of the State University of New York at Buffalo. She was a recipient of an IBM Ph.D. fellowship and is broadly interested in data and information analysis with a focus on information integration, ensemble methods, transfer learning, anomaly detection, and mining data streams. She is a member of the IEEE. Charu C. Aggarwal is a Research Scientist at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his Ph.D. from Massachusetts Institute of Technology in 1996. He has since worked in the field of performance analysis, databases, and data mining. He has published over 200 papers in refereed conferences and journals, and has applied for, or been granted, over 80 patents. He has received the IBM Corporate Award (2003), IBM Outstanding Innovation Award (2008), IBM Research Division Award (2008), and Master Inventor at IBM three times. He is a fellow of the ACM and IEEE. Jiawei Han is the Abel Bliss Professor of Computer Science at the University of Illinois at Urbana-Champaign. His research includes data mining, information network analysis, database systems, and data warehousing, with over 600 journal and conference publications. He has chaired or served on many program committees of international conferences, including PC co-chair for KDD, SDM, and ICDM conferences, and Americas Coordinator forVLDB conferences. He also served as the founding Editor-In-Chief of ACM Transactions on Knowledge Discovery from Data and is serving as the Director of Information Network Academic Research Center supported by U.S. Army Research Lab. He is Fellow of ACM and Fellow of IEEE, and received 2004 ACM SIGKDD Innovations Award, 2005 IEEE Computer Society Technical Achievement Award, 2009 IEEE Computer Society Wallace McDowell Award, and 2011 Daniel C. Drucker Eminent Faculty Award at UIUC. His book, Data Mining: Concepts and Techniques, has been used popularly as a textbook worldwide. Details ISBN 3031007778 ISBN-13 9783031007774 Title Outlier Detection for Temporal Data Author Manish Gupta, Jing Gao, Charu Aggarwal, Jiawei Han Format Paperback Year 2014 Pages 110 Publisher Springer International Publishing AG GE_Item_ID:158871040; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 48.81 USD
Location: Fairfield, Ohio
End Time: 2024-12-22T09:30:34.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9783031007774
Book Title: Outlier Detection for Temporal Data
Number of Pages: Xviii, 110 Pages
Language: English
Publication Name: Outlier Detection for Temporal Data
Publisher: Springer International Publishing A&G
Publication Year: 2014
Subject: Probability & Statistics / General, Databases / Data Mining
Item Weight: 9.3 Oz
Type: Textbook
Author: Manish Gupta, Jing Gao, Jiawei Han, Charu Aggarwal
Subject Area: Mathematics, Computers
Item Length: 9.3 in
Item Width: 7.5 in
Series: Synthesis Lectures on Data Mining and Knowledge Discovery Ser.
Format: Trade Paperback